Digital Sustainabili TOOS ON BULLE <u>Chemicals</u> FUE

zürich

Current fossil-based chemical industry is unsustainable

PNAS 2019, 116, 11187-11194

Environmental sustainability metrics for chemical systems

- Reaction (process level)
- Life cycle (supply chain)
- Planet (Earth)

SOCIETY

SUSTAINABLE

ENVIRONM

How to quantify sustainability performance?

Simple process level metrics (reaction): E-Factor = Waste (kg)/Product (kg)

Easy to apply but less accurate

• Life cycle assessment: Covers the whole life cycle (cradle to grave, impacts on human health, ecosystems and resources)

Broader scope but data intensive

Chem. Ind. **1992**, 903–906 International Standard Organization ISO-14040 **1997**

How to quantify sustainability performance?

• Life cycle assessment: Combine process simulation/measurements with environmental databases

Fossil MeOH: 0.723 kgCO₂eq/kg

Green MeOH (H₂ from wind electrolysis, CO₂ from DAC): -0.681 kgCO₂eq

Grave

Environment

Cradle

Homogenous vs. heterogenous (Geminal-atom for cross-coupling)

Heterogeneously vs. homogeneously catalysed C–N coupling:

 Cug/PCN or Cu₂O + L1 (L1 = 4,7-dimethoxy-1,10-phenanthroline) in the synthesis of 1-(naphthalen-1-yl)-1H-imidazole through the coupling of imidazole and 1-iodonaphthalene.

Planetary boundaries

Current LCA standard metrics hard to interpret

Planetary boundaries (PBs) on nine Earth-system processes key for resilience

99.4%

unsustainable

Nature 2009, 461, 472-475

Data and sustainability: Insights from ecoinvent

9

ecoinvent and digital sustainability

Launched 20 years ago by leading Swiss research institutions

ecoinvent publishes and maintains a comprehensive life cycle inventory database that provides reliable and transparent information on the environmental impacts of various products and services.

Team of 60+ experts

Our mission

び

data

Compile and review the Promote and support the availability of high-quality best available data

Publish data in a regularly maintained, transparent database and support users' needs

We collect, manage, and publish background data for all kinds of environmental sustainability studies.

Connected to the LCA data ecosystem

ecoinvent database

Over 21,000 processes (2023) covering all regions of the world.

Database sectorial coverage

Data providers of ecoinvent

Academy

Brazilian Agricultural Research Corporation (Embrapa) ifeu gGmbH Paul Scherrer Institut (PSI) Swiss Federal Institute of Technology Zurich ETH University of Cape Town

Industry

Paper and carton: CEPI, ECMA, EPIS, Eurosac, Pro-Carton

Textile: Cotton Incorporated

Metals: IZA, IAI, EAA, CI

Chemicals: EUROPUR; Fertilizers Europe, Plastics Europe, Yara

Construction: Saint-Gobain,

CemSuisse

National initiatives

Some regional/national database initiatives integrate their national data fully within our database:

- Brazil
- Quebec

Dataset Description

General comment

This dataset is provided by Saint-Gobain ISOVER SA, CH-1522 Lucens and represents a cradle-to-gate inventory of the average production of all glass woll mats, produced with phenol-based binder in 2018 per kg. The average density of an St. Gobain ISOVER SA glass wool mat is 25.00 kg/m3. The following packaging per m3 is not included: corrugated board, mixed fibre, single wall: 7.44E-04 kg/m3; paper, wood containing, LWC: 2.39E-04 kg/m3: packaging film, LDPE: 2.25E-02 kg/m3; EUR-flat pallet: 4.17E-03 pce/m3 More information on the glass wool by St. Gobain ISOVER SA and their technical specifications can be found under http://www.isover.ch/

HiQ-LCA: ecoinvent is the project partner leading data management

Create detailed, representative, reliable and transparent LCA datasets for batteries

Initiative

Database maintenance

By maintaining the database, guidance from sustainability assessment becomes more effective.

Maintenance means:

- Constant correction of bugs and errors.
- Frequent update of fast-evolving data (i.e., electricity mixes).
- Update of data as they grow old.
- Update of data as new features are added.
- Addition of new data (new technologies, new regions).

These maintenance principles are equally vital for digital sustainability tools developed by PSE!

The database over the years

Numbers for Allocation, cut-off

Number of datasets in 3.9.1 and 3.10

3.10: GWP change for chemicals

All chemical market activities

European chemicals market activities

400% 400% vs v3.10 vs v3.10 Relative impact change, chemicals narkets, in [%], for v 3.9.1 vs v3.10 Relative impact change, chemicals 350% 350% 300% 300% 9.1 250% 250% с С for v 200% 200% ____ 150% [%] ___ 100% 150% 100% markets, markets, 50% 50% 0% 0% -50% -50% Minimum Median Maximum Maximum Average Minimum Median Average (n=678) (n=142)

Use of outdated data may lead to less accurate assessments aimed for informed decision-making. Why did environmental impacts change after a release?

Linking: calculating the database

Hydrogen supply chain

- New and upaded activities
 - coal gasification & steam methane reforming (hydrogen is the reference product)
- Updated activities
 - steam cracker & chlor-alkali electrolysis (hydrogen is a by-product)

 Significant increase in impact scores in 3.10 vs 3.9.1 since coal gasification was not previously covered.

PLASTICS FUROPE

INSTITUT FÜR ENERGIE-UND UMWELTFORSCHUNG chlor

A sector group of Cefic

PAUL SCHERRER INSTITUT

Key petrochemicals production

- Replaced industry-based aggregated steam cracking data with more recent and transparent ones.
- Updated the data for key chemical precursors and their derivatives.

PSE and digital sustainability

PSE principles have the potential to pave the way toward a sustainable future by guiding decision-making.

Main challenge: Digital enabled sustainability is data-intensive!

Data and PSE

The PSE community could

- satisfy at scale the ever-increasing demand for data creation.
- improve the accessibility to process data and digital tools.
- apply effectively sustainability data in tools to facilitate holistic environmental assessments and sustainable decision-making.

Data and PSE

PSE tools have pioneered the creation of sustainability data for chemical processes, from machine learning to process modelling and optimization algorithms!

- Tools designed to simplify early-stage assessments.
- Streamlined process simulation for chemicals manufacturing.
- Early assessment for potential designs of integrated biorefineries.
 - Predictive assessments for chemical processes using machine learning.

1. Minten, Vandegehuchte, Jaumard, Meys, Reinert, and Bardow (2024). https://doi.org/10.1039/D4GC00964A

- 2. Parvatker and Eckelman (2020). https://doi.org/10.1021/acssuschemeng.0c00439
- 3. Moncada, Posada, and Ramírez (2015). <u>https://doi.org/10.1002/bbb.1580</u>
- 4. Kleinekorte (2022). Doctoral Dissertation, RWTH Aachen University

Data and PSE

The PSE community could enhance the accessibility to robust process data and tools based on first principles.

- Disclose data in publications for future reference and use.
 - → vital for digital sustainability advances
- Establish a specialized journal, "PSE Sustainability Data and Models," dedicated to publishing and hosting data and models, with thorough data review.
 - raw data need curation, e.g., ecoinvent conducts multiple review stages to ensure high quality.
- Develop open-source tools for experts and non-experts.
- Provide data and tools in initiatives and databases for a wider use.

Data gaps and background data

Streamlined LCA methods for chemicals

Streamlined LCA methods for chemicals: ML for impacts prediction

Computers & Chemical Engineering **2018**, 108, 179-193

ACS Sustainable Chemistry and Engineering **2024**, 12, 2700-2708

Motivation for generating augmented LCA data: Impact breakdown

 Average contribution highest from raw materials (51 - 80% considering ~700 chemicals)

Reaxys for LCA data augmentation

- Start from an **ecoinvent** product
- Find the chemical neighborhood
- Repeat the same procedure
- Determine unknown impacts from stoichiometric and ecoinvent data

Reaxys for LCA data augmentation

- Chemicals from ecoinvent (171)
- Estimated chemicals (1752)
- Other chemicals (147)

Challenges:

- Missing reactants/products/stoichiometric data
- Alternative pathways for the same molecule
- No energy requirements

Prospective life cycle assessment

- Background system often assumed to be fixed •
- However, economy is expected to change ٠

Integrated Assessment Models and socio-economic pathways

Prospective life cycle assessment based on future scenarios (premise) 34

ETH zürich

Prospective life cycle assessment

• Carbon footprint of **future green chemicals** dropping by 90% (vs. 10% in fossil routes)

Life cycle optimization

Multi-objective model based on superstructures

Objective function (e.g., cost, impacts)
Process equations (e.g., mass balances)
Specifications
Continuous variables (e.g., pressures, flows)
Discrete variables (logic decisions)

Life cycle sustainability assessment

Computers & Chemical Engineering **1999**, 23, 1509-1526 *Computers & Chemical Engineering* **2010**, 34, 1365-1376

Techno-sphere wide implications of emerging routes

Relevant questions in Green Chemistry and beyond

• Which C feedstocks?

- Which renewable technologies?
- Break-even efficiency and bottlenecks?
- Where, when and how to deploy technologies?
- How to optimally couple the chemical industry with other sectors?

PULPO: An *oracle* to underpin *sustainable* technology development...

ETH zürich

- Regular maintenance of data and tools enhances the robustness of environmental assessments.
- PSE concepts demonstrated their ability to pioneer large-scale process data creation.
- Accessible data and tools can significantly advance digital sustainability.

Take home message:

Conclusions

Process Systems Engineering can help cover data gaps in LCA and enable the optimization of large-scale systems to guide the future sustainable transition

Acknowledgements

Thank you!

NCCR Catalysis (grant 180544), a National Centre of Competence in Research, Swiss National Science Foundation